کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1565558 | 1514206 | 2013 | 6 صفحه PDF | دانلود رایگان |

Nuclear fuels composed of uranium alloys in monolithic and dispersed forms are being considered for research and compact power reactors due to their density properties (greater than 15 g-U/cm3) and fast heat transfer. U–Nb–Zr and U–Mo alloys are the most promising systems for plate fuel elements owing to their broad γ-phase stability field, which shows higher ductility and isotropic behaviour, allowing extensive fabrication capability. In the present work, γ-phase stabilized U–7.5Nb–2.5Zr and U–10Mo alloys were characterized by mechanical and thermal analyses for comparison of their behaviour under deformation and heat-treatment. The results demonstrate that the alloys have substantially different properties regarding deformation, kinetics phase transformation and recovery/recrystallization. The main results show that U–Nb–Zr is superior regarding fabrication capabilities although the γ-phase is less stable than U–Mo alloys.
Journal: Journal of Nuclear Materials - Volume 440, Issues 1–3, September 2013, Pages 304–309