کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1565817 | 1514209 | 2013 | 9 صفحه PDF | دانلود رایگان |

Major internal components of WWER-type nuclear reactors are made from annealed 18Cr10NiTi steel, a close analog to AISI 321. Void swelling of the baffle ring in particular could be a major factor limiting operation of the reactor beyond the current 30 years license. A predictive swelling equation is needed to forecast the spatial variation of swelling so as to identify those areas requiring additional attention. Available data on the swelling of this steel arising from irradiation in the BOR-60 fast reactor was combined with data from a heavy ion accelerator at higher displacement rates to formulate a predictive equation of swelling for the WWER-relevant range of temperature, irradiation dose and dose rates. This equation was used to estimate the swelling distribution over a cross-section of the baffle ring of a WWER reactor during a service life up to 60 years, reaching a local maximum of ∼30% swelling. It was shown that void swelling extends over a larger portion of the baffle ring than previously expected and exhibits a very complex and irregular distribution in response to complex distributions of temperature and dpa rate. Most importantly, as operation is extended beyond 30 years several areas of the ring may experience swelling in excess of 10% where void-induced embrittlement begins and one area may exceed 20% after 45 years, a swelling level where a complete loss of ductility is known to occur.
Journal: Journal of Nuclear Materials - Volume 437, Issues 1–3, June 2013, Pages 415–423