کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1566093 | 1514213 | 2013 | 9 صفحه PDF | دانلود رایگان |

Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel–zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290°, 330°, and 370 °C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness.
► Oxidation performance of Zircaloy-4 tailored via NiZr intermetallic coating.
► Parametric design of experiments used to optimize surface modification approach.
► Microstructural evolution correlated with weight gain and hydrogen absorption.
Journal: Journal of Nuclear Materials - Volume 433, Issues 1–3, February 2013, Pages 514–522