کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1566308 | 1514221 | 2012 | 7 صفحه PDF | دانلود رایگان |

Precipitate evolution in HCM12A following proton irradiations to 3, 7 and 10 dpa at 400 °C, or following Fe++ irradiations to 100 and 500 dpa at 500 °C was studied. Ni/Si/Mn-rich precipitates were irradiation-induced and their nucleation was closely related to the local enrichment of Ni, Si and Mn at sinks such as dislocations due to radiation induced segregation. The composition of Ni/Si/Mn-rich precipitates evolved with irradiation dose and was different from that of the G-phase reported in irradiated ferritic–martensitic alloys. Nucleation of Cu-rich precipitates saturated after 3 dpa at 400 °C and coarsened at higher dose. Irradiation enhanced the precipitation of Cu-rich precipitates at 400 °C but suppressed the nucleation at 500 °C. Partial dissolution of Cu-rich precipitates must have occurred at 500 dpa at 500 °C as the volume fraction was smaller at 500 dpa than that at 100 dpa. Cr-rich precipitates were irradiation enhanced and were observed under irradiation at 400 °C but not observed at 500 °C due to the increase in Cr solubility with temperature. The evolution of Cr-rich precipitates with irradiation dose was likely related to the complex redistribution of Cr among chromium carbides, grain boundaries and matrix under irradiation. Radiation-induced Cr-rich carbides were observed following Fe++ irradiation to 500 dpa at 500 °C.
Journal: Journal of Nuclear Materials - Volume 425, Issues 1–3, June 2012, Pages 105–111