کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1566810 999827 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی هسته ای و مهندسی
پیش نمایش صفحه اول مقاله
Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment
چکیده انگلیسی
Supercritical water (SCW) is being considered as a cooling medium for the next generation nuclear reactors because it provides high thermal efficiency and plant simplification. However, materials corrosion has been identified as a critical problem due to the oxidative nature of supercritical water. Thus, for safety using of these nuclear reactor systems a systematic study of candidate materials corrosion is needed. As in other high temperature environments, corrosion in SCW occurs by the growth of an oxide layer on the materials surface. The current work aims to evaluate oxidation behavior of AISI 304L SS and Incoloy 800HT in water at supercritical temperatures in the range 723-873 K under a pressure of 25 MPa for up to 1680 h. After exposure to deaerated supercritical water, the samples were investigated using gravimetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Oxide films grown on these materials have a layered structure with an outer layer consisting of a mixture of iron oxide/iron-nickel spinel oxides and an inner layer consisting of chromium oxide in the case of Incoloy 800HT and nickel-chromium spinel oxide in the case of AISI 304L SS. The mass gains for Incoloy 800HT at all temperatures were small, while comparatively with AISI 304L SS which exhibited higher oxidation rates. In the same time the results obtained by EIS indicate the best corrosion resistance of oxides grown on Incoloy 800HT surface.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Nuclear Materials - Volume 415, Issue 2, 15 August 2011, Pages 147-157
نویسندگان
, , , , ,