کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1568679 | 999905 | 2008 | 5 صفحه PDF | دانلود رایگان |

Failures of zirconium alloy cladding tubes during a long-term storage at room temperature were first reported by Simpson and Ells in 1974, which remains unresolved by the old delayed hydride cracking (DHC) models. Using our new DHC model, we examined failures of cladding tubes after their storage at room temperature. Stress-induced hydride phase transformation from γ to δ at a crack tip creates a difference in hydrogen concentration between the bulk region and the crack tip due to a higher hydrogen solubility of the γ-hydride, which is a driving force for DHC at low temperatures. Accounting for our new DHC model and the failures of zirconium alloy cladding tubes during long-term storage at room temperature, we suggest that the spent fuel rods to be stored either in an isothermal condition or in a slow cooling condition would fail by DHC during their dry storage upon cooling to below 180 °C. Further works are recommended to establish DHC failure criterion for the spent fuel rods that are being stored in dry storage.
Journal: Journal of Nuclear Materials - Volume 378, Issue 1, 15 August 2008, Pages 30–34