کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1575890 | 1514762 | 2013 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
دانش مواد (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Granular composites consisting of aluminium (Al), tungsten (W) and polytetraflouroethylene (PTFE) are typical energetic materials, which possess high density and strength along with other advantageous properties. To investigate the mechanical behaviour of Al/W/PTFE granular composites, compression tests of three Al/W/PTFE mixtures under quasi-static loading and high strain rate conditions were conducted on a CSS-44100 Materials Testing System and a Split-Hopkinson Pressure Bar (SHPB), respectively. By employing Al bars, the amplitude of the transmitted signal was significantly enhanced and a high signal-to-noise ratio was obtained. This enhancement was due to the decreased Young's modulus of the bars, which led to increased signal amplitude from the strain gauges. The Al/W/PTFE granular composites were processed using a cold isostatic pressing and vacuum sintering approach. In this work, the fracture modes and stress-strain relationships of Al/W/PTFE composites with mass ratios of Al:W:PTFE of 24:0:76, 12:50:38 and 5.5:77:17.5 were studied. A detailed discussion is provided to cover the effect that tungsten addition, strain rate and mass ratio have on the deformation behaviour of the composites. The results show that the mass ratio plays a significant role in determining the dynamic behaviour and failure modes of the composites. Both the Al/W/PTFE (24:0:76) and the Al/W/PTFE (12:50:38) composites are strain rate dependent, elasto-plastic materials characterised by increased yield stress with increased strain rate. However, the Al/W/PTFE (5.5:77:17.5) composite is a brittle material, which shows brittle fracture at a relatively low strain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: A - Volume 581, 1 October 2013, Pages 48-55
Journal: Materials Science and Engineering: A - Volume 581, 1 October 2013, Pages 48-55
نویسندگان
X.F. Zhang, J. Zhang, L. Qiao, A.S. Shi, Y.G. Zhang, Y. He, Z.W. Guan,