کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1589092 | 1515165 | 2013 | 5 صفحه PDF | دانلود رایگان |

• Effect of kainic acid on dendritic spine motility was measured at early and late stages of brain development.
• Imaging was conducted using multiphoton laser-scanning microscope.
• Hippocampal slices from CA1 area were exposed to different concentrations of kainic acid at two different time points.
• The effect of kainic acid on CA1 piramidal cell spine motility is more time- rather than concentration-dependent.
Dendrites and spines undergo dynamic changes in physiological conditions, such as learning and memory, and in pathological conditions, such as epilepsy. Abnormalities in dendritic spines have commonly been observed in brain specimens from epilepsy patients and animal models of epilepsy. However, the functional implications and clinical consequences of this dendritic pathology for epilepsy are uncertain. Motility of dendritic spines and axonal filopodia has been recently discovered by the advanced imaging techniques, and remains to a large degree an exciting phenomenology in search of function. Here we demonstrate the effect of kainic acid (KA), which is a structural analog of glutamate, on dendritic spine motility in hippocampal CA1 area at the different stages of brain development. In order to reveal the changes that take place in spine and filopodial motility in the epileptic model of brain, time-lapse imaging of acute hippocampal slices treated with various concentrations of KA after different incubation time points was performed. The effects of KA exposure were tested on the slices from young (postnatal day (P)7–P10) and adolescent (P28–P30) Thy1-YFPH transgenic mice. Slices were treated with either 50 μM or 100 μM of KA, for either 30 or 100 min. The results obtained in our experiments show diverse effects of KA in 2 different age groups. According to our results, 100 μM/100 min KA treatment increases spine motility at early stage of brain development (P10) by 41.5%, while in P30 mice spine motility is increased only by 3%. Our findings also indicate that effect of KA on hippocampal dendritic spine motility is predominantly time- rather than concentration-dependent.
Journal: Micron - Volume 49, June 2013, Pages 28–32