کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1614 87 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering
چکیده انگلیسی

Natural polysaccharides are attractive compounds with which to build scaffolds for bone and cartilage tissue engineering. Here we tested two non-standard ones, HE800 and GY785, for the two-dimensional (2-D) and three-dimensional (3-D) culture of osteoblasts (MC3T3-E1) and chondrocytes (C28/I2). These two glycosaminoglycan-like marine exopolysaccharides were incorporated into an injectable silylated hydroxypropylmethylcellulose-based hydrogel (Si-HPMC) that has already shown its suitability for bone and cartilage tissue engineering. Results showed that, similarly to hyaluronic acid (HA) (the control), HE800 and GY785 significantly improved the mechanical properties of the Si-HPMC hydrogel and induced the attachment of MC3T3-E1 and C28/I2 cells when these were cultured on top of the scaffolds. Si-HPMC hydrogel containing 0.67% HE800 exhibited the highest compressive modulus (11 kPa) and allowed the best cell dispersion, especially of MC3T3-E1 cells. However, these cells did not survive when cultured in 3-D within hydrogels containing HE800, in contrast to C28/I2 cells. The latter proliferated in the microenvironment or concentrically depending on the nature of the hydrogel. Among all the constructs tested the Si-HPMC hydrogels containing 0.34% HE800 or 0.67% GY785 or 0.67% HA presented the most interesting features for cartilage tissue engineering applications, since they offered the highest compressive modulus (9.5–11 kPa) while supporting the proliferation of chondrocytes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Biomaterialia - Volume 7, Issue 5, May 2011, Pages 2119–2130
نویسندگان
, , , , , , , , ,