کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1620588 | 1516391 | 2009 | 6 صفحه PDF | دانلود رایگان |

The effect of manganese on the microstructure of Mg–3Al alloy, especially the nucleation efficiency of Al–Mn particles on primary Mg, has been investigated in this paper. Mg–0.72Mn was used to fabricate Mg–3Al–xMn (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) alloys, and the grain sizes of these alloys fluctuate at 390 μm indicating addition of manganese does not evidently influence the grain size of Mg–3Al alloy. Through XRD, FESEM and TEM detection, it is found that Al0.89Mn1.11 compound is the dominant Al–Mn phase in Mg–3Al–0.3Mn, Mg–3Al–0.4Mn and Mg–3Al–0.5Mn, and distributes in primary Mg matrix and interdendritic regions with an angular blocky morphology. The number of Al0.89Mn1.11 increases gradually with increasing manganese content while the grain sizes of primary Mg are nearly the same in Mg–3Al, Mg–3Al–0.3Mn, Mg–3Al–0.4Mn and Mg–3Al–0.5Mn, indicating Al0.89Mn1.11 has low nucleation efficiency on primary Mg.
Journal: Journal of Alloys and Compounds - Volume 486, Issues 1–2, 3 November 2009, Pages 136–141