کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1620609 | 1516391 | 2009 | 7 صفحه PDF | دانلود رایگان |

The structural, magnetic and electrical properties of (La0.70−xNdx)Sr0.30Mn0.70Cr0.30O3 perovskites (0 ≤ x ≤ 0.30) prepared by the usual ceramic procedure were investigated. Structural Rietveld refinement revealed that these compounds crystallize in a rhombohedral (R3¯c) perovskite structure when x = 0, 0.10 and 0.20, while for x = 0.30 the structure becomes orthorhombic (Pbnm). It was found that the substitution of La by Nd reduces the Curie temperature (TC). The FC, ZFC, M(H) and AC susceptibility measurements show typical canted-antiferromagnetism for the Nd-doped samples, in which a ferromagnetic component coexists with predominant antiferromagnetic interactions. The values of the magnetization (M(H)) decrease very slightly when increasing the Nd content, compared to the undoped sample (MS values at 5 T and 2 K are, respectively, 47.9, 47.3 and 47.5 emu/g for x = 0.10, 0.20 and 0.30, compared to 48.2 emu/g for x = 0), indicating that the Nd3+ contribution is negligible compared to the total moment of the ferromagnetic (Mn/Cr) network. The resistivity increases by several orders of magnitude with Nd-doping and the semi-conducting behaviour persists in the whole temperature range. The interaction between Mn4+–O–Cr3+and Cr3+–O–Cr3+ is responsible for the semi-conducting state.
Journal: Journal of Alloys and Compounds - Volume 486, Issues 1–2, 3 November 2009, Pages 250–256