کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1620626 | 1516391 | 2009 | 5 صفحه PDF | دانلود رایگان |

The hydrogen storage capacities, hydrogen absorption mechanism and hydride stability of Mg-based composites prepared by spark plasma sintering (SPS) were investigated in this paper. The results showed that the composites had a double-phase microstructure of Mg phase and V-based solid solution, with nanocrystalline magnesium existing at their sintering interface. With the addition of the V-based solid solution in 20% volume fraction, the composite exhibited a maximum reversible hydrogen storage capacity of 4.2 wt.% at 573 K, compared with that of pure Mg of almost zero. DSC results indicated that the hydride decomposition temperature of MgH2 decreased sharply from 708 K in pure Mg to 636 K and to 591 K as the volume of V-based solid solution increased from 20 vol.% to 50 vol.%. With the addition of V-based solid solution, the hydrogen absorption kinetics of pure Mg was greatly improved at 573 K, and its hydrogen absorption mechanism changed from surface reaction control to diffusion control in the composite. Based on these experimental results, a model was put forward to describe the hydrogen absorption/desorption mechanism in these composites.
Journal: Journal of Alloys and Compounds - Volume 486, Issues 1–2, 3 November 2009, Pages 338–342