کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1620760 | 1005739 | 2010 | 8 صفحه PDF | دانلود رایگان |

Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600–2000 K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal β-Ta2N and orthorhombic η-Ta2N3, which was the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of ɛ-TaN, ϑ-TaN, δ-TaN, Ta3N5-I or Ta3N5-II, which was predicted to be the stable phase at P>17P>17 GPa and T=2800T=2800 K, at the P,TP,T-conditions of this experiment. The bulk modulus of η-Ta2N3 was determined to be B0=319(6)B0=319(6) GPa from a 2nd order Birch–Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B0=348.0(9)B0=348.0(9) GPa for a 2nd-order fit or B0=339(1)B0=339(1) GPa and B′=4.67(9)B′=4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined.
Journal: Journal of Alloys and Compounds - Volume 502, Issue 1, 16 July 2010, Pages 5–12