کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1627082 | 1516446 | 2007 | 5 صفحه PDF | دانلود رایگان |

The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti41.5Zr2.5Hf5Cu42.5−xNi7.5Si1Snx (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti–Zr–Hf–Cu–Ni–Si–Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti41.5Zr2.5Hf5Cu37.5Ni7.5Si1Sn5 alloy. The activation energies for glass transition and crystallization for Ti41.5Zr2.5Hf5Cu37.5Ni7.5Si1Sn5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti41.5Zr2.5Hf5Cu37.5Ni7.5Si1Sn5 alloy also possesses superior mechanical properties.
Journal: Journal of Alloys and Compounds - Volume 427, Issues 1–2, 16 January 2007, Pages 171–175