کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1656506 1517583 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence of annealing on mechanical and electrochemical properties of cold sprayed niobium coatings
ترجمه فارسی عنوان
تأثیر آنیلینگ بر خواص مکانیکی و الکتروشیمیایی پوشش های نایوبیم اسپری شده سرد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
چکیده انگلیسی

In the present study, thick and dense niobium coatings were obtained using cold spray technique by using air as a process gas. Inter-splat boundaries are completely removed in the coatings heat treated at 1500 °C by the formation of equiaxed grains. Heat treatment reduces the porosity level to ~ 0.1%. Inter-splat boundary bonding state of the heat treated coatings was investigated using micro-tensile testing, scratch testing and nanoindentation and compared with the bulk niobium. The elastic modulus of the cold spray coatings heat treated at 1500 °C exhibits as high as 103 GPa whereas the same for bulk is 105 GPa. The increase in mechanical strength of inter-splat boundary from as-sprayed condition to 1500 °C was estimated to be 750%. Similarly corrosion performance of heat treated coatings was also evaluated in 1 M KOH solution through potentiodynamic polarization as well as impedance spectroscopy studies. The corrosion rate for the coatings heat treated at 1500 °C was estimated to be 0.443 MPY which is comparable for the bulk (0.498 MPY). Coatings annealed at 1250 °C and above, which is very close to the recrystallization temperature of niobium, were found to perform almost as bulk niobium indicating exciting implications for various applications. Assessment of structure–property correlations was done based on the microstructure, porosity and inter-splat bonding state, together with the mechanical and corrosion properties of the heat treated tantalum cold sprayed coatings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Surface and Coatings Technology - Volume 296, 25 June 2016, Pages 124–135
نویسندگان
, , , ,