کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
16772 | 42611 | 2016 | 8 صفحه PDF | دانلود رایگان |

• S. coelicolor produced more actinorhodin than undecylprodigiosin in pure culture.
• Live E. coli cell addition to S. coelicolor culture changed antibiotic production.
• Undecylprodigiosin production increased and actinorhodin decreased.
• E. coli produced diffusible compounds that mediated this change.
• We extracted, identified and verified compounds eliciting these changes.
The aim of this work was to investigate the interaction between E.coli and Streptomyces coelicolor A3 (2) for the increased production of undecylprodigiosin and identify the E. coli actives mediating this inter-species interaction. The antibiotics of interest were the red-pigmented undecylprodigiosin and blue-pigmented actinorhodin. Pure cultures of S. coelicolor in a defined medium produced higher concentrations of actinorhodin compared to those of undecylprodigiosin. The latter however, is more important due to its immunosuppressive and antitumor properties. As a strategy to increase undecylprodigiosin production, we added separately, live cells and heat-killed cells of E. coli C600, and the cell-free supernatant of E. coli culture to S. coelicolor cultures in shake flasks. The interaction with live cells of E. coli altered the antibiotic production pattern and undecylprodigiosin production was enhanced by 3.5-fold compared to the pure cultures of S. coelicolor and actinorhodin decreased by 15-fold. The heat-killed cells of E. coli however, had no effect on antibiotic production. In all cases, growth and glucose consumption of S. coelicolor remained almost the same as those observed in the pure culture indicating that the changes in antibiotic production were not due to nutritional stress. Results with cell-free supernatant of E. coli culture indicated that the interaction between S. coelicolor and E. coli was mediated via diffusible molecule(s). Using a set of extraction procedures and agar-well diffusion bioassays, we isolated and preliminarily identified a class of compounds. For the preliminary verification, we added the compound which was the common chemical structural moiety in this class of compounds to the pure S. coelicolor cultures. We observed similar effects on antibiotic production as with the live E. coli cells and their supernatant indicating that this class of compounds secreted by E. coli indeed could act as actives during interspecies interaction and increase the production of undecylprodigiosin.
Figure optionsDownload as PowerPoint slide
Journal: Enzyme and Microbial Technology - Volume 90, August 2016, Pages 45–52