کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1684481 | 1010530 | 2009 | 5 صفحه PDF | دانلود رایگان |

Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 1014 to 9 × 1016 cm−2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p0)17O, 16O(d,p1)17O and 12C(d,p0)13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 1016 cm−2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 267, Issue 1, January 2009, Pages 108–112