کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
168892 457958 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of the errors associated with typical pulverized coal char combustion modeling assumptions for oxy-fuel combustion
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Analysis of the errors associated with typical pulverized coal char combustion modeling assumptions for oxy-fuel combustion
چکیده انگلیسی

In CFD models of pulverized coal combustion, which often have complex, turbulent flows with millions of coal particles reacting, the char combustion sub-model needs to be computationally efficient. There are several common assumptions that are made in char combustion models that allow for a compact, computationally efficient model. In this work, oft used single- and double-film simplified models are described, and the temperature and carbon combustion rates predicted from these models are compared against a more accurate continuous-film model. Both the single- and double-film models include a description of the heterogeneous reactions of carbon with O2, CO2, and H2O, along with a Thiele based description of reactant penetration. As compared to the continuous-film model, the double-film model predicts higher temperatures and carbon consumption rates, while the single-film model gives more accurate results. A single-film model is therefore preferred to a double-film model for a simplified, yet fairly accurate description of char combustion. For particles from 65 to 135 μm, in O2 concentrations ranging from 12 to 60 vol.%, with either CO2 or N2 as a diluent, particle temperatures from the single-film model are expected to be accurate within 270 K, and carbon consumption rate predictions should be within 16%, with greater accuracies for a CO2 diluent and at lower bulk oxygen concentrations. A single-film model that accounts for reactant penetration and both oxidation and gasification reactions is suggested as a computationally efficient sub-model for coal char combustion that is reasonably accurate over a wide range of gas environments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Combustion and Flame - Volume 160, Issue 8, August 2013, Pages 1499–1509
نویسندگان
, , ,