کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
169174 457981 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time-resolved blowoff transition measurements for two-dimensional bluff body-stabilized flames in vitiated flow
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Time-resolved blowoff transition measurements for two-dimensional bluff body-stabilized flames in vitiated flow
چکیده انگلیسی

Flame holding and blowoff characteristics of bluff-body stabilized, turbulent flames were measured in an enclosed rectangular duct with a triangular flame holder in vitiated, premixed flows. Blowoff stability margins were characterized with chemiluminescence measurements performed by high-speed imaging to capture flame dynamics during the approach to flame blow off. As the equivalence ratio was decreased, local extinctions along the flames interacting with shear layers surrounding the bluff body recirculation zone occurred with greater frequency and proximity to the wake stagnation zone. Decreased equivalence ratio resulted in extinction events at the trailing edge of the stagnation zone, which allowed reactants to be convected into the recirculation zone and burned behind the bluff body. Increasing reactant dilution of the recirculation zone eventually resulted in flame lift-off or extinction of the flame in the neighboring shear layer. These near field shear layer flames convected to the wake stagnation zone, and were eventually quenched. Simultaneous particle imaging velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) measurements captured the flame edge location and aerodynamic behavior as blowoff was approached. Two-dimensional hydrodynamic stretch along the flame front and flow field vorticity maps were extracted from the combined PIV/OH PLIF data. The distribution of flame stretch shifted to greater values as the equivalence ratio decreased and is believed to be the cause of local flame extinction in the wake stagnation zone that starts the blowoff process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Combustion and Flame - Volume 159, Issue 1, January 2012, Pages 291–305
نویسندگان
, , , , , , ,