کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1720667 | 1520355 | 2015 | 12 صفحه PDF | دانلود رایگان |

• The XBEACH model is applied for the first time to investigate the self-organisation behaviour of coastal rip channel system.
• The computations demonstrate the importance of sediment grain size on rip channel system, especially the characteristic parameters pertaining to the generation and evolution of the rip channels.
• Quantitative relationships between wave parameters, sediment size and dynamic parameters of the rip-channel system are developed.
Field observations indicate that both wave conditions and sediment characteristics exert the controlling effects on the beach states and determine the development of rip channel system. Although the role of wave conditions on the rip channel dynamics has been extensively studied, little attention has been paid to the effects of sediment characteristics. In this paper, we use a nonlinear morphodynamic model, XBeach, to investigate the impact of grain size on the formation and nonlinear evolution of rip channels under the condition of uniform sediments. We find that the grain size can affect a number of aspects of rip channel dynamics. With increasing grain size, both longshore migration speed and growth rate decrease significantly, while the response and saturation times increase. On the other hand, the influence of grain size on the geometrical properties of the rip channel seems to be much less pronounced, as the wavelength of the channels hardly changes and the three-dimensionality features only vary slightly. The “global analysis” method is applied to investigate the mechanism underlying the variations of growth rate and migration speed for varying sediment size. The calculations reveal that these variations are mainly caused by the amount of sea bed sediments being stirred up which is clearly grain-size-dependent. Quantitative relationships between predicted rip channel characteristics, sediment grain size and the hydrodynamic conditions are tentatively established, which is amendable to improvement by extending the analysis to other or more general situations.
Journal: Coastal Engineering - Volume 99, May 2015, Pages 124–135