کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1725616 1520702 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On surrogate methods in propeller optimisation
ترجمه فارسی عنوان
در روش های جایگزین در بهینه سازی پروانه
کلمات کلیدی
بهینه سازی محدودیت، طرح پروانه چند منظوره، پیش بینی کریگینگ، شبکه عصبی، کاویتاسیون، روش سطح پاسخ
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی دریا (اقیانوس)
چکیده انگلیسی


• We discuss several meta-models to replace simulations in optimisation design tasks.
• Attempts were made to recognise and constrain certain types of cavitation.
• Cavitation pattern could be reduced and transformed towards attached sheet cavities.
• Kriging interpolation results are most accurate.
• Trends in blade geometry variation can be predicted similarly by all met-models.

In marine propeller design, tools for propeller performance evaluation are often time consuming and automated optimisation of the blade geometry is thus not conducted. This paper discusses several response surface methods to replace the main part of the needed computations: the Kriging predictor, standard and with input improvement; the feed forward neural network; the cascade correlation neural network; and a mixed version. Optimisation assignments are performed by applying each of the surrogates to find the best solution in a multi-objective propeller design task including advanced constraints on cavitation. The final performance regarding geometry trends and degree of improvement are evaluated. Further, an approach is presented on a practical application of minimum computational effort by combining a response surface method to fill the design space and calculations in a local search method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Engineering - Volume 88, 15 September 2014, Pages 214–227
نویسندگان
, ,