کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1726483 1520754 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparison of estimators for the generalised Pareto distribution
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی دریا (اقیانوس)
پیش نمایش صفحه اول مقاله
A comparison of estimators for the generalised Pareto distribution
چکیده انگلیسی

The generalised Pareto distribution (GPD) is often used to model the distribution of storm peak wave heights exceeding a high threshold, from which return values can be calculated. There are large differences in the performance of various parameter and quantile estimators for the GPD. Commonly used estimation methods such as maximum likelihood or probability weighted moments are not optimal, especially for smaller sample sizes. The performance of several estimators for the GPD is compared by the Monte Carlo simulation and the implications for estimating return values of significant wave height are discussed. Of the estimators compared, the likelihood-moment (LM) estimator has close to the lowest bias and variance over a wide range of sample sizes and GPD shape parameters. The LM estimator always exists, is simple to compute and has a low sensitivity to choice of threshold. It is recommended that the LM estimator is used for calculating return values of significant wave height when the sample size is less than 500. For sample sizes above 500 the NEW estimator of Zhang and Stephens (2009) can give accurate results for low computational cost.


► There are large differences in the performance of estimators for the GPD.
► Commonly used estimation methods are not optimal.
► The performance of several estimators is compared by simulation.
► A modified likelihood-moment estimator is shown to perform well over a wide range of conditions.
► This results in lower bias and variance in estimates of return values.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Engineering - Volume 38, Issues 11–12, August 2011, Pages 1338–1346
نویسندگان
, , ,