کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1727427 | 1520775 | 2008 | 9 صفحه PDF | دانلود رایگان |

By coupling numerical wave model (NWM) and artificial neural networks (ANNs), a new procedure for wave prediction is proposed. In many situations, numerical wave modeling is not justified due to economical consideration. Although incorporation of an ANN model is inexpensive, such a model needs a long time period of wave data for training, which is generally inconvenient to achieve. A proper combination of these two methods could carry the potentials of both. Based on the proposed approach, wave data are generated by a NWM by means of a short period of assumed winds at a concerned point. Then, an ANN is designed and trained using the above-mentioned generated wind-wave data. This ANN model is capable of mapping wind-velocity time series to wave height and period time series with low cost and acceptable accuracy. The method was applied for wave hindcasting to two different sites; Lake Superior and the Pacific Ocean. Simulation results show the superiority of the proposed approach.
Journal: Ocean Engineering - Volume 35, Issues 3–4, March 2008, Pages 417–425