کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1732224 | 1521460 | 2015 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parameter extraction of different fuel cell models with transferred adaptive differential evolution
ترجمه فارسی عنوان
استخراج پارامتر مدل های مختلف سلول های سوختی با تحول دیفرانسیل تطبیقی منتقل شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سلول سوختی، استخراج پارامتر، تکامل دیفرانسیل،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
To improve the design and control of FC (fuel cell) models, it is important to extract their unknown parameters. Generally, the parameter extraction problems of FC models can be transformed as nonlinear and multi-variable optimization problems. To extract the parameters of different FC models exactly and fast, in this paper, we propose a transferred adaptive DE (differential evolution) framework, in which the successful parameters of the adaptive DE solving previous problems are properly transferred to solve new optimization problems in the similar problem-domains. Based on this framework, an improved adaptive DE method (TRADE, in short) is presented as an illustration. To verify the performance of our proposal, TRADE is used to extract the unknown parameters of two types of fuel cell models, i.e., PEMFC (proton exchange membrane fuel cell) and SOFC (solid oxide fuel cell). The results of TRADE are also compared with those of other state-of-the-art EAs (evolutionary algorithms). Even though the modification is very simple, the results indicate that TRADE can extract the parameters of both PEMFC and SOFC models exactly and fast. Moreover, the V-I characteristics obtained by TRADE agree well with the simulated and experimental data in all cases for both types of fuel cell models. Also, it improves the performance of the original adaptive DE significantly in terms of both the quality of final solutions and the convergence speed in all cases. Additionally, TRADE is able to provide better results compared with other EAs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 86, 15 June 2015, Pages 139-151
Journal: Energy - Volume 86, 15 June 2015, Pages 139-151
نویسندگان
Wenyin Gong, Xuesong Yan, Xiaobo Liu, Zhihua Cai,