کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1732450 1521472 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A polygeneration system for methanol and power production based on coke oven gas and coal gas with CO2 recovery
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
A polygeneration system for methanol and power production based on coke oven gas and coal gas with CO2 recovery
چکیده انگلیسی


• We integrate a new polygeneration system based on coke oven gas and coal gas.
• We simulate the systems including new system, IGCC and chemical production system.
• Exergy analysis method is adopted to disclose the performance of systems.
• A new point for less energy penalty for carbon capture was discovered.
• A new way for coke over gas reforming was given.

Polygeneration system for chemical and power co-production has been regarded as one of the promising technologies for fossil fuel sustainable utilization. In this paper, a new polygeneration system with carbon capture is integrated, based on coal gas and coke oven gas inputs for methanol and power co-production. New system can achieve more than 5% of primary energy saving ratio, and more than 50% of exergy efficiency. Exergy balance and Energy Utilization Diagrams (EUDs) are applied to show the performance improvement. In the system, pressure swing adsorption process is used to remove hydrogen from coke oven gas to enhance methane concentration, which reduces energy consumption and exergy destruction of reforming process. And for the methane reforming process, thermal energy for reforming is sensible thermal energy of syngas out of gasifier instead of fuel gas combustion. Furthermore, fresh syngas for methanol synthesis is the mixed gas of reformed coke oven gas and coal gas, which means that syngas components are adjusted without energy consumption. Lastly, CO2 is recovered during chemical energy discharge and at the highest concentration resulting in less energy penalty. All of these energy integrating characteristics result in good thermal performance, which supplies a new direction for clean energy technology.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 74, 1 September 2014, Pages 174–180
نویسندگان
, , , ,