کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1734799 1016163 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational modeling, validation, and utilization for predicting the performance, combustion and emission characteristics of hydrogen IC engines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Computational modeling, validation, and utilization for predicting the performance, combustion and emission characteristics of hydrogen IC engines
چکیده انگلیسی

Hydrogen-fueled internal combustion engines are considered to be more efficient and cleaner alternatives to their fossil-fueled counterparts. Reasonably fast and accurate predictive computational tools are essential for practical design, control and optimization of hydrogen engines. To serve for this broader purpose, a computational model, which has been widely used for gasoline and diesel engines, is investigated for its capability to simulate hydrogen engines. Specifically, fuel-specific sub-models are first incorporated by properly accounting for hydrogen’s distinct properties such as flame speed and burn rate. The accuracy of the model is then assessed by validating it in comparison to independent experimental data. Finally, it is utilized to quantify the environmental impact of exhaust gas recirculation. With these improvements, the present predictive model is shown to capture the measured engine performance and emission data well under different operating conditions. In particular, the variations of peak in-cylinder pressure, heat release rate, brake power, brake thermal efficiency, exhaust temperature, and NOx emissions are predicted close to the measured values. With the addition of a proportional-integral-derivative controller to the engine model, exhaust gas recirculation level is varied, resulting in nearly an order of magnitude reduction in NOx emissions during the present simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 36, Issue 1, January 2011, Pages 647–655
نویسندگان
, ,