کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
17673 42688 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The adsorption of multimeric enzymes on very lowly activated supports involves more enzyme subunits: Stabilization of a glutamate dehydrogenase from Thermus thermophilus by immobilization on heterofunctional supports
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
The adsorption of multimeric enzymes on very lowly activated supports involves more enzyme subunits: Stabilization of a glutamate dehydrogenase from Thermus thermophilus by immobilization on heterofunctional supports
چکیده انگلیسی

Glutamate dehydrogenase (GDH) from Thermus thermophilus is a homotrimeric enzyme that tends to dissociate at acidic pH values. GDH is readily adsorbed on highly activated anionic exchangers (HAAE), but hardly adsorbed on lowly activated supports (LAAE) or on highly activated epoxy supports. When using amino-epoxy supports, GDH immobilized on HAAE-epoxy and more slowly on LAAE-epoxy supports. Both immobilized biocatalysts were incubated at pH 10 for different times to increase the multipoint covalent attachment. LAAE-epoxy-GDH was stable at pH 4 and 25 °C, the enzyme stability did not depend on the enzyme concentration and did not release any subunit to the supernatant, in opposition to the results obtained using HAAE-epoxy supports. The general application of this strategy to stabilize multimeric enzymes was verified by immobilizing a crude protein extract. It seems that proteins adsorb on LAAE by the larger region of their surface (that is the one that involves the highest number of enzyme subunits), since it is the only area large enough to permit a multipoint ionic exchange on this LAAE. On the contrary, using HAAE, some proteins may become adsorbed by clusters that were rich in anionic groups and located in a corner of the multimer, involving only some of the subunits in the enzyme immobilization. That way, a careful design of the design of the support permits to take full advantage of the immobilization on heterofunctional supports.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Enzyme and Microbial Technology - Volume 44, Issue 3, 5 March 2009, Pages 139–144
نویسندگان
, , , , , , ,