کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1768680 1020234 2005 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neural network development for the forecasting of upper atmosphere parameter distributions
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
Neural network development for the forecasting of upper atmosphere parameter distributions
چکیده انگلیسی

This paper presents a neural network modeling approach to forecast electron concentration distributions in the 150–600 km altitude range above Arecibo, Puerto Rico. The neural network was trained using incoherent scatter radar data collected at the Arecibo Observatory during the past two decades, as well as the Kp geomagnetic index provided by the National Space Science Data Center. The data set covered nearly two solar cycles, allowing the neural network to model daily, seasonal, and solar cycle variations of upper atmospheric parameter distributions. Two types of neural network architectures, feedforward and Elman recurrent, are used in this study. Topics discussed include the network design, training strategy, data analysis, as well as preliminary testing results of the networks on electron concentration distributions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 36, Issue 12, 2005, Pages 2480–2485
نویسندگان
, , ,