کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1807909 1025292 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multicontext wavelet-based thresholding segmentation of brain tissues in magnetic resonance images
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Multicontext wavelet-based thresholding segmentation of brain tissues in magnetic resonance images
چکیده انگلیسی

A novel segmentation method based on wavelet transform is presented for gray matter, white matter and cerebrospinal fluid in thin-sliced single-channel brain magnetic resonance (MR) scans. On the basis of the local image model, multicontext wavelet-based thresholding segmentation (MCWT) is proposed to classify 2D MR data into tissues automatically. In MCWT, the wavelet multiscale transform of local image gray histogram is done, and the gray threshold is gradually revealed from large-scale to small-scale coefficients. Image segmentation is independently performed in each local image to calculate the degree of membership of a pixel to each tissue class. Finally, a strategy is adopted to integrate the intersected outcomes from different local images. The result of the experiment indicates that MCWT outperforms other traditional segmentation methods in classifying brain MR images.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Magnetic Resonance Imaging - Volume 25, Issue 3, April 2007, Pages 381–385
نویسندگان
, ,