کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1814416 | 1025649 | 2009 | 4 صفحه PDF | دانلود رایگان |

We have studied experimentally the in-plane fluctuation conductivity near the superconducting transition in single crystal samples of YBa2Cu3O7, Y0.98Ca0.02Ba2Cu3O7, YBa1.9Sr0.1Cu3O7 and YBa2Cu2.97Zn0.03O7. In order to test the stability of the observed fluctuation regimes, low magnetic fields were applied perpendicular to the Cu–O2 atomic planes. When the transition is approached from above we first observe a three-dimensional (3D) Gaussian regime then a crossover to a genuine critical region where the exponent is consistent with the predictions of the 3D-XY-E universality class. Decreasing further the temperature towards Tc, our results systematically reveal the occurrence of a regime beyond 3D-XY characterized by a very small critical exponent. We propose that this regime is precursory to a weak first-order superconducting transition driven by antiferromagnetic excitations related to the pseudogap phenomenon. The dilution of divalent impurities in YBa2Cu3O7 does not affect the stability of the fluctuation regime beyond 3D-XY and in the case of Ca doping a further approach towards the first-order behaviour is observed.
Journal: Physica B: Condensed Matter - Volume 404, Issue 19, 15 October 2009, Pages 3109–3112