کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1817557 1525698 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quaternary borocarbides: Relatively high Tc intermetallic superconductors and magnetic superconductors
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Quaternary borocarbides: Relatively high Tc intermetallic superconductors and magnetic superconductors
چکیده انگلیسی

Discovery of superconductivity in Y–Ni–B–C (Tc ∼ 13 K) gave rise to the class of quaternary rare earth transition metal borocarbide superconductors. Before the discovery of Fe-based arsenide superconductors, this was the only class of materials containing a magnetic element, viz., Ni, yet exhibiting Tcs > 5 K. Many members of this class have high Tc (>10 K). Tc of ∼23 K in Y–Pd–B–C system equaled the record Tc known then, for intermetallics. Another feature that sets this class apart, is the occurrence of the exotic phenomenon of coexistence of superconductivity and magnetism at temperatures >5 K. Availability of large and electronically ‘clean’ single crystals and large Ginzburg-Landau (G–L) parameter, κ, have enabled detailed investigation of nonlocal effects of superconductivity. Intermediate value of upper critical field Hc2, has enabled detailed investigation of superconductivity in this class, over the complete H–T plane. This has revealed details of anisotropy of superconductivity (e.g., a fourfold symmetry in the square a–b plane is found) and raised questions on the symmetry of order parameter. After a brief outline of the discovery, this article gives a summary of the materials and highlights of superconducting properties of this class of materials. Interesting results from studies, using various techniques, on YNi2B2C (Tc ∼ 15 K) and LuNi2B2C (Tc ∼ 16 K) are presented, including observation of unusual square vortex lattice and its structural transformation with H and T. With conduction electrons involved in the magnetic order of this class of superconductors, the interplay of superconductivity and magnetism is intimate in these magnetic superconductors. With Tc (∼11 K) > TN (∼6 K) in ErNi2B2C, Tc (∼8 K) = TN (∼8 K) in HoNi2B2C and Tc (∼6 K) < TN (∼11 K) in DyNi2B2C, and with other parameters being favorable as mentioned earlier, this class of magnetic superconductors have become ideal materials to investigate the coexistence phenomenon. A few major results on these are presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica C: Superconductivity and its Applications - Volume 514, 15 July 2015, Pages 173–183
نویسندگان
, ,