کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1885804 | 1533506 | 2016 | 9 صفحه PDF | دانلود رایگان |

• Treatment of CNC induced the formation of new carboxylic acid groups.
• Antiradical properties were found in CNC after treatment.
• Modification of CNC structure was analyzed by FTIR spectra and thermogravimetric analysis.
• CNC reinforcements improve mechanical and barrier properties in gellan-based films.
Antiradical properties were introduced on cellulose nanocrystals (CNCs) by redox pair (RP) initiator and γ-radiation treatments. Different procedures were tested on CNC, first a 2 h reaction of hydrogen peroxide (H2O2)/ascorbic acid (AA) was performed on CNC solution. γ-Radiation treatment at 20 kGy dose was then applied and immediately after GA was reacted during 24 h with the pretreated CNCs, giving CNC-H2O2-AA-γ-GA. The formation of new carboxylic acids and carbonyl groups were characterized by FT-IR at 1650 and 1730 cm−1 respectively. Carboxylic acid functionalities were also analyzed by conductometric titration where an increase from 49 to 134 mmol COOH kg−1 was found from native to irradiated CNCs. A similar increase in the carboxylic acid content (132 mmol kg−1) was observed for CNC-H2O2-AA-γ-GA, showing the highest radical scavenging properties (8 mM Trolox eq/mg CNC). Thermogravimetric analysis confirmed the structural changes onto CNC. Film packaging containing 20% of CNC-H2O2-AA-γ-GA was then added to a gellan-based film packaging. A significant improvement (p<0.05) of the tensile strength (TS), the tensile modulus (TM) and the elongation at break (EB) and water vapor permeability reduction was observed when CNC-H2O2-AA-γ-GA was added to the film packaging formulation.
Journal: Radiation Physics and Chemistry - Volume 118, January 2016, Pages 61–69