کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1908842 1046687 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription
چکیده انگلیسی

The G-quadruplex, a non-B DNA motif that forms in certain G-rich sequences, is often located near transcription start sites in growth regulatory genes. Multiple lines of evidence show that reactive oxygen species generated as second messengers during physiologic signaling target specific DNA sequences for oxidative base modifications. Because guanine repeats are uniquely sensitive to oxidative damage, and G4 sequences are known “hot spots” for genetic mutation and DNA translocation, we hypothesized that G4 sequences are targeted for oxidative base modifications in hypoxic signaling. Approximately 25% of hypoxia-regulated genes in pulmonary artery endothelial cells harbored G4 sequences within their promoters. Chromatin immunoprecipitation showed that common base oxidation product 8-oxoguanine was selectively introduced into G4s, in promoters of hypoxia up-, down-, and nonregulated genes. Additionally, base excision DNA repair (BER) enzymes were recruited, and transient strand breaks formed in these sequences. Transcription factor Sp1, constitutively bound to G4 sequences in normoxia, was evicted as 8-oxoguanine accumulated during hypoxic exposure. Blocking hypoxia-induced oxidant production prevented both base modifications and decreased Sp1 binding. These findings suggest that oxidant stress in hypoxia causes oxidative base modifications, recruitment of BER enzymes, and transient strand breaks in G4 promoter sequences potentially altering G4 integrity and function.


► We tested the idea that DNA G-quadruplex sequences are prone to oxidative damage.
► G-quadruplex sequences are prone to oxidative damage in hypoxia.
► Damage attracts base excision repair enzymes and associates with DNA strand breaks.
► The damage affects transcription factor binding in the vicinity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Free Radical Biology and Medicine - Volume 53, Issue 1, 1 July 2012, Pages 51–59
نویسندگان
, , , , ,