کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1941936 1052560 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش گیاه شناسی
پیش نمایش صفحه اول مقاله
Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana
چکیده انگلیسی


• We studied the regulatory modes of plant mitochondrial malate dehydrogenase (mMDH).
• mMDH is insensitive to thiol-based redox control both in vitro and in vivo.
• mMDH activity is lowered by adenine nucleotides, especially by ATP.

Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower Ki. Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Bioenergetics - Volume 1857, Issue 6, June 2016, Pages 810–818
نویسندگان
, ,