کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1942686 1052623 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of cyclosis on chloroplast–cytoplasm interactions revealed with localized lighting in Characean cells at rest and after electrical excitation
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش گیاه شناسی
پیش نمایش صفحه اول مقاله
Effects of cyclosis on chloroplast–cytoplasm interactions revealed with localized lighting in Characean cells at rest and after electrical excitation
چکیده انگلیسی

Cytoplasmic streaming in Characean internodes enables rapid intracellular transport and facilitates interactions between spatially remote cell regions. Cyclosis-mediated distant interactions might be particularly noticeable under nonuniform illumination, in the vicinity of light–shade borders where metabolites are transported between functionally distinct cell regions. In support of this notion, chlorophyll fluorescence parameters assessed on a microscopic area of Chara corallina internodal cells (area of inspection, AOI) responded to illumination of nearby regions in asymmetric manner depending on the vector of cytoplasmic streaming. When a beam of white light was applied through a 400-μm optic fiber upstream of AOI with regard to the direction of cytoplasmic streaming, non-photochemical quenching (NPQ) developed after a lag period in AOI exposed to moderate intensity light. Conversely, no NPQ was induced in the same cell area when the beam position was shifted to an equal distance downstream of AOI. Light–response curves for the efficiency of photosystem II electron transport in chloroplasts differed markedly depending on the illumination pattern (whole-cell versus small area illumination) but these differences were eliminated after the inhibition of cytoplasmic streaming with cytochalasin B. Localized illumination promoted chloroplast fluorescence responses to electrical plasmalemma excitation at high light intensities, which contrasts to the requirement of low to moderate irradiances for observation of the stimulus–response coupling under whole-cell illumination. The results indicate that different photosynthetic capacities of chloroplasts under general and localized illumination are related to lateral transport of nonevenly distributed cytoplasmic components between the cell parts with dominant photosynthetic and respiratory metabolism.

Research highlights
► Cyclosis provides functional polarity to cell areas around a light spot in Chara.
► A mediator of interplastid interactions moves at a velocity of streaming cytoplasm.
► Local cell fluorescence changes may arise after and aside from incident light pulse.
► Cytoplasm inflow from shaded areas elevates photosynthetic capacity of chloroplasts.
► Light pattern affects the cell fluorescence response to membrane electrical excitation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Bioenergetics - Volume 1807, Issue 9, September 2011, Pages 1221–1230
نویسندگان
, ,