کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1943613 1537054 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bidirectional electron transfer in photosystem I: Replacement of the symmetry-breaking tryptophan close to the PsaB-bound phylloquinone (A1B) with a glycine residue alters the redox properties of A1B and blocks forward electron transfer at cryogenic tempe
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش گیاه شناسی
پیش نمایش صفحه اول مقاله
Bidirectional electron transfer in photosystem I: Replacement of the symmetry-breaking tryptophan close to the PsaB-bound phylloquinone (A1B) with a glycine residue alters the redox properties of A1B and blocks forward electron transfer at cryogenic tempe
چکیده انگلیسی

A conserved tryptophan residue located between the A1B and FX redox centres on the PsaB side of the Photosystem I reaction centre has been mutated to a glycine in Chlamydomonas reinhardtii, thereby matching the conserved residue found in the equivalent position on the PsaA side. This mutant (PsaB:W669G) was studied using EPR spectroscopy with a view to understanding the molecular basis of the reported kinetic differences in forward electron transfer from the A1A and the A1B phyllo(semi)quinones. The kinetics of A1− reoxidation due to forward electron transfer or charge recombination were measured by electron spin echo spectroscopy at 265 K and 100 K, respectively. At 265 K, the reoxidation kinetics are considerably lengthened in the mutant in comparison to the wild-type. Under conditions in which FX is initially oxidised the kinetics of charge recombination at 100 K are found to be biphasic in the mutant while they are substantially monophasic in the wild-type. Pre-reduction of FX leads to biphasic kinetics in the wild-type, but does not alter the already biphasic kinetic properties of the PsaB:W669G mutant. Reduction of the [4Fe–4S] clusters FA and FB by illumination at 15 K is suppressed in the mutant. The results provide further support for the bi-directional model of electron transfer in Photosystem I of C. reinhardtii, and indicate that the replacement of the tryptophan residue with glycine mainly affects the redox properties of the PsaB bound phylloquinone A1B.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Bioenergetics - Volume 1757, Issue 12, December 2006, Pages 1623–1633
نویسندگان
, , , , ,