کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1944858 1053242 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Expression of functional mammal flavocytochrome b558 in yeast: Comparison with improved insect cell system
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Expression of functional mammal flavocytochrome b558 in yeast: Comparison with improved insect cell system
چکیده انگلیسی

Activity of phagocyte NADPH-oxidase relies on the assembly of five proteins, among them the transmembrane flavocytochrome b558 (Cytb558) which consists of a heterodimer of the gp91phox and p22phox subunits. The Cytb558 is the catalytic core of the NADPH-oxidase that generates a superoxide anion from oxygen by using a reducing equivalent provided by NADPH via FAD and two hemes. We report a novel strategy to engineer and produce the stable and functional recombinant Cytb558 (rCytb558). We expressed the gp91phox and p22phox subunits using the baculovirus insect cell and, for the first time, the highly inducible Pichia pastoris system. In both hosts, the expression of the full-length proteins reproduced native electrophoretic patterns demonstrating that the two polypeptides are present and, that gp91phox undergoes co-translational glycosylation. Spectroscopic analyses showed that the rCytb558 displayed comparable spectral properties to neutrophil Cytb558. In contrast to rCytb558 produced in the insect cells with higher yield, the enzyme expressed in yeast displayed a superoxide dismutase-sensitive NADPH-oxidase activity, indicating a superoxide generation activity. It was also blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium (DPI). As in neutrophil NADPH-oxidase, activation occurred by the interactions with the soluble regulatory subunits suggesting comparable protein–protein contact patterns. We focus on the stability and function of the protein during solubilisation and reconstitution into liposomes. By comparing oxidase activities in different membrane types, we confirm that the lipid-protein environment plays a key role in the protein function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Biomembranes - Volume 1798, Issue 6, June 2010, Pages 1179–1188
نویسندگان
, , , , ,