کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1945850 1053278 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structure of the antimicrobial β-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Structure of the antimicrobial β-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation
چکیده انگلیسی

All atom molecular dynamics simulations of the 18-residue β-hairpin antimicrobial peptide protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR-NH2) in a fully hydrated dilauroylphosphatidylcholine (DLPC) lipid bilayer have been implemented. The goal of the reported work is to investigate the structure of the peptide in a membrane environment (previously solved only in solution [R.L. Fahrner, T. Dieckmann, S.S.L. Harwig, R.I. Lehrer, D. Eisenberg, J. Feigon, Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry and Biology, 3 (1996) 543–550]), and to delineate specific peptide–membrane interactions which are responsible for the peptide's membrane binding properties. A novel, previously unknown, “kick” shaped conformation of the peptide was detected, where a bend at the C-terminal β-strand of the peptide caused the peptide backbone at residues 16–18 to extend perpendicular to the β-hairpin plane. This bend was driven by a highly persistent hydrogen-bond between the polar peptide side-chain of TYR7 and the unshielded backbone carbonyl oxygen atom of GLY17. The H-bond formation relieves the unfavorable free energy of insertion of polar groups into the hydrophobic membrane core. PG-1 was anchored to the membrane by strong electrostatic binding of the protonated N-terminus of the peptide to the lipid head group phosphate anions. The orientation of the peptide in the membrane, and its influence on bilayer structural and dynamic properties are in excellent agreement with solid state NMR measurements [S. Yamaguchi, T. Hong, A. Waring, R.I. Lehrer, M. Hong, Solid-State NMR Investigations of Peptide–Lipid Interaction and Orientation of a b-Sheet Antimicrobial Peptide, Protegrin, Biochemistry, 41 (2002) 9852–9862]. Importantly, two simulations which started from different initial orientations of the peptide converged to the same final equilibrium orientation of the peptide relative to the bilayer. The kick-shaped conformation was observed only in one of the two simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Biomembranes - Volume 1768, Issue 3, March 2007, Pages 509–520
نویسندگان
, ,