کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1951338 | 1055756 | 2009 | 7 صفحه PDF | دانلود رایگان |

The intermembrane space of mitochondria and the thylakoid lumen of chloroplasts are evolutionary descendents of the periplasmic space of bacteria. Presumably due to their common ancestry, the active oxidation of cysteinyl thiols is used in these three compartments in order to stabilize protein folding or to regulate protein function. In contrast, compartments of the eukaryotic cell which developed from the bacterial cytosol maintain cysteine residues largely reduced. Whereas the oxidizing machinery of bacteria is well characterized, that of mitochondria was only recently discovered and that of thylakoids still awaits to be identified. In mitochondria, protein oxidation is mediated by the sulfhydryl oxidase Erv1 which is highly conserved among eukaryotes. Erv1 oxidizes its substrate protein Mia40 which serves as an import receptor for proteins destined for the intermembrane space. This review summarizes the current knowledge on the mitochondrial disulfide relay system and compares its features to those of the periplasm and the thylakoid lumen. Although the sulfhydryl oxidases in the intermembrane space, Erv1, and the bacterial periplasm, DsbA–DsbB, share key structural features their primary sequence is not related and the evolutionary origin of Erv1 is unclear. On the basis of phylogenetic analyses of Erv1 sequences we propose that the mitochondrial oxidation machinery originated from a lateral gene transfer from flavobacteria-like prokaryotes early in eukaryotic evolution.
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research - Volume 1793, Issue 1, January 2009, Pages 71–77