کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1954327 | 1057781 | 2011 | 9 صفحه PDF | دانلود رایگان |

The activation of voltage-gated ion channels is controlled by the S4 helix, with arginines every third residue. The x-ray structures are believed to reflect an open-inactivated state, and models propose combinations of translation, rotation, and tilt to reach the resting state. Recently, experiments and simulations have independently observed occurrence of 310-helix in S4. This suggests S4 might make a transition from α- to 310-helix in the gating process. Here, we show 310-helix structure between Q1 and R3 in the S4 segment of a voltage sensor appears to facilitate the early stage of the motion toward a down state. We use multiple microsecond-steered molecular simulations to calculate the work required for translating S4 both as α-helix and transformed to 310-helix. The barrier appears to be caused by salt-bridge reformation simultaneous to R4 passing the F233 hydrophobic lock, and it is almost a factor-two lower with 310-helix. The latter facilitates translation because R2/R3 line up to face E183/E226, which reduces the requirement to rotate S4. This is also reflected in a lower root mean-square deviation distortion of the rest of the voltage sensor. This supports the 310 hypothesis, and could explain some of the differences between the open-inactivated- versus activated-states.
Journal: - Volume 100, Issue 6, 16 March 2011, Pages 1446–1454