کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1956872 | 1057869 | 2008 | 11 صفحه PDF | دانلود رایگان |

In this article, we show, using a mathematical multiscale model, how cell adhesion may be regulated by interactions between E-cadherin and β-catenin and how the control of cell adhesion may be related to cell migration, to the epithelial-mesenchymal transition and to invasion in populations of eukaryotic cells. E-cadherin mediates cell-cell adhesion and plays a critical role in the formation and maintenance of junctional contacts between cells. Loss of E-cadherin-mediated adhesion is a key feature of the epithelial-mesenchymal transition. β-catenin is an intracellular protein associated with the actin cytoskeleton of a cell. E-cadherins bind to β-catenin to form a complex which can interact both with neighboring cells to form bonds, and with the cytoskeleton of the cell. When cells detach from one another, β-catenin is released into the cytoplasm, targeted for degradation, and downregulated. In this process there are multiple protein-complexes involved which interact with β-catenin and E-cadherin. Within a mathematical individual-based multiscale model, we are able to explain experimentally observed patterns solely by a variation of cell-cell adhesive interactions. Implications for cell migration and cancer invasion are also discussed.
Journal: - Volume 95, Issue 1, 1 July 2008, Pages 155–165