کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1958012 1057897 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nanoscale Probing Reveals that Reduced Stiffness of Clots from Fibrinogen Lacking 42 N-Terminal Bβ-Chain Residues Is Due to the Formation of Abnormal Oligomers
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Nanoscale Probing Reveals that Reduced Stiffness of Clots from Fibrinogen Lacking 42 N-Terminal Bβ-Chain Residues Is Due to the Formation of Abnormal Oligomers
چکیده انگلیسی

Removal of Bβl-42 from fibrinogen by Crotalus atrox venom results in a molecule lacking fibrinopeptide B and part of a thrombin binding site. We investigated the mechanism of polymerization of desBβ1-42 fibrin. Fibrinogen trinodular structure was clearly observed using high resolution noncontact atomic force microscopy. E-regions were smaller in desBβ1-42 than normal fibrinogen (1.2 nm ± 0.3 vs. 1.5 nm ± 0.2), whereas there were no differences between the D-regions (1.7 nm ± 0.4 vs. 1.7 nm ± 0.3). Polymerization rate for desBβ1-42 was slower than normal, resulting in clots with thinner fibers. Differences in oligomers were found, with predominantly lateral associations for desBβ1-42 and longitudinal associations for normal fibrin. Clot elasticity as measured by magnetic tweezers showed a G′ of ∼1 Pa for desBβ1-42 compared with ∼8 Pa for normal fibrin. Spring constants of early stage desBβ1-42 single fibers determined by atomic force microscopy were ∼3 times less than normal fibers of comparable dimensions and development. We conclude that Bβ1-42 plays an important role in fibrin oligomer formation. Absence of Bβ1-42 influences oligomer structure, affects the structure and properties of the final clot, and markedly reduces stiffness of the whole clot as well as individual fibrin fibers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 96, Issue 6, 18 March 2009, Pages 2415–2427
نویسندگان
, , , , , , , ,