کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1960069 1057950 2005 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intracellular and Extracellular Concentrations of Na+ Modulate Mg2+ Transport in Rat Ventricular Myocytes
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Intracellular and Extracellular Concentrations of Na+ Modulate Mg2+ Transport in Rat Ventricular Myocytes
چکیده انگلیسی

Apparent free cytoplasmic concentrations of Mg2+ ([Mg2+]i) and Na+ ([Na+]i) were estimated in rat ventricular myocytes using fluorescent indicators, furaptra (mag-fura-2) for Mg2+ and sodium-binding benzofuran isophthalate for Na+, at 25°C in Ca2+-free conditions. Analysis included corrections for the influence of Na+ on furaptra fluorescence found in vitro and in vivo. The myocytes were loaded with Mg2+ in a solution containing 24 mM Mg2+ either in the presence of 106 mM Na+ plus 1 mM ouabain (Na+ loading) or in the presence of only 1.6 mM Na+ to deplete the cells of Na+ (Na+ depletion). The initial rate of decrease in [Mg2+]i from the Mg2+-loaded cells was estimated in the presence of 140 mM Na+ and 1 mM Mg2+ as an index of the rate of extracellular Na+-dependent Mg2+ efflux. Average [Na+]i, when estimated from sodium-binding benzofuran isophthalate fluorescence in separate experiments, increased from 12 to 31 mM and 47 mM after Na+ loading for 1 and 3 h, respectively, and decreased to ∼0 mM after 3 h of Na+ depletion. The intracellular Na+ loading significantly reduced the initial rate of decrease in [Mg2+]i, on average, by 40% at 1 h and by 64% at 3 h, suggesting that the Mg2+ efflux was inhibited by intracellular Na+ with 50% inhibition at ∼40 mM. A reduction of the rate of Mg2+ efflux was also observed when Na+ was introduced into the cells through the amphotericin B-perforated cell membrane (perforated patch-clamp technique) via a patch pipette that contained 130 mM Na+. When the cells were heavily loaded with Na+ with ouabain in combination with intracellular perfusion from the patch pipette containing 130 mM Na+, removal of extracellular Na+ caused an increase in [Mg2+]i, albeit at a very limited rate, which could be interpreted as reversal of the Mg2+ transport, i.e., Mg2+ influx driven by reversed Na+ gradient. Extracellular Na+ dependence of the rate of Mg2+ efflux revealed that the Mg2+ efflux was activated by extracellular Na+ with half-maximal activation at 55 mM. These results contribute to a quantitative characterization of the Na+-Mg2+ exchange in cardiac myocytes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 89, Issue 5, November 2005, Pages 3235–3247
نویسندگان
, , ,