کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1978003 1061521 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase activities by in vitro-expressed cytochrome P450 1A4 and 1A5 from common cormorant (Phalacrocorax carbo)
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase activities by in vitro-expressed cytochrome P450 1A4 and 1A5 from common cormorant (Phalacrocorax carbo)
چکیده انگلیسی

Here we report the inter-paralog comparison of cytochrome P4501A (CYP1A) catalytic function in common cormorant (Phalacrocorax carbo) using the recombinant proteins synthesized by yeast-based vector system. CYP1A4 and CYP1A5 proteins from common cormorant were heterologously expressed in yeast Saccaromyces cerevisiae. Kinetic analyses revealed that among alkoxyresorufin (methoxy-, ethoxy-, pentoxy- and benzyloxyresorufin) O-dealkylase (AROD) activities Vmax value for ethoxyresorufin O-deethylase (EROD) activity was the highest for both enzymes, reaching 0.91 ± 0.034 and 1.8 ± 0.043 nmol/min/nmol CYP for CYP1A4 and CYP1A5, respectively. Similar results were obtained for the catalytic efficiencies represented as the ratios of Vmax to Km (Vmax/Km). Meanwhile, distinct substrate preferences were also observed; CYP1A4 had Vmax and Vmax/Km values for benzyloxyresorufin O-debenzylase (BROD) activity 12- and 46-fold greater than CYP1A5, respectively, while CYP1A5 was about 13- and 4.5-fold more efficient in methoxyresorufin O-demethylase (MROD) activity than CYP1A4. The Km values showed no significant change among MROD, EROD, pentoxyresorufin O-depenthylase (PROD) and BROD activities for both enzymes, except for significant differences between PROD and other three activities for CYP1A4. Comparing the results in the present study with previous studies addressing chicken and rat CYP1A enzymes, it is also clear that CYP1A orthologs have different catalytic preferences for AROD activities between cormorant and rat and even between cormorant and chicken. Variations in CYP1A catalytic function between cormorant CYP1A paralogs and between CYP1A orthologs from cormorant and other species indicate that enzymatic properties should be characterized on the basis not only of a limited model species such as chicken, but also of multiple species to further understand the mechanism underlying differences in substrate selectivity and the interaction with environmental contaminants in avian species.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology - Volume 149, Issue 4, May 2009, Pages 544–551
نویسندگان
, , ,