کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1979264 | 1061671 | 2010 | 9 صفحه PDF | دانلود رایگان |

Hard X-ray fluorescence microscopy is well-suited to in-situ investigations of trace metal distributions within whole, unstained, biological tissue, with sub-parts-per-million detection achievable in whole cells. The high penetration of X-rays indicates the use of X-ray fluorescence tomography for structural visualization, and recent measurements have realised sub-500-nm tomography on a 10-μm cell. Limitations of present approaches impact the duration of an experiment and imaging fidelity. Developments in X-ray resolution, detector speed, cryogenic environments, and the incorporation of auxiliary signals are being pursued within the synchrotron community. Several complementary approaches to X-ray fluorescence tomography will be routinely available to the biologist in the near future. We discuss these approaches and review applications of biological relevance.
Journal: Current Opinion in Structural Biology - Volume 20, Issue 5, October 2010, Pages 606–614