کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1983671 | 1539904 | 2013 | 9 صفحه PDF | دانلود رایگان |

Diabetes-associated lymphocyte dysfunction may be attributed to the direct effect of hyperglycemia, but the impact of glucose concentration on B cell functionality is not fully resolved. Since, adenosine 5′-triphosphate (ATP) and its metabolite adenosine are the core constituents of the purinergic signaling network involved in regulation of immune response we aimed to investigate the impact of high glucose concentration on ATP outflow and metabolism on B cell surface. Purified human peripheral blood B cells cultured at high glucose (25 mM) concentration released significantly less ATP (~60%) comparing to cells cultured in low glucose (5 mM) concentration. We observed that high glucose altered ATP hydrolysis on B cell surface due to increased activity of nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1/CD39). In the presence of 10 μM [3H]AMP and 100 μM ATP significant quantities of [3H]ADP and [3H]ATP were generated, although the AMP to ADP phosphorylation potential of B cells cultured in high glucose decreased significantly. The flow cytometry analysis revealed that the level of ecto-adenylate kinase 1β (AK1β) on surface of B cells cultured in high glucose decreased significantly. Inhibition of NTPDase1/CD39 activity with 100 μM ARL67156 resulted in decreased cell viability, although significantly more viable cells retained in the culture media containing low glucose compared to high glucose media. Selective inhibition of P2X7 purinergic receptor irrespective of glucose concentration completely protected B cells against the ARL 67156-induced cell death. We assume that high glucose-induced alteration of ATP handling on B cell surface might contribute to impaired functionality of B cells in diabetes.
Journal: The International Journal of Biochemistry & Cell Biology - Volume 45, Issue 7, July 2013, Pages 1246–1254