کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1987270 1540281 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release
چکیده انگلیسی
One of the key tenets of tissue engineering is to develop scaffold materials with favorable biodegradability, surface properties, outstanding mechanical strength and controlled drug release property. In this study, we generated core-sheath nanofibers composed of poly (ɛ-caprolactone) (PCL) and silk fibroin (SF) blends via emulsion electrospinning. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), contact angle and tensile measurements. An in vitro FITC release study was conducted to evaluate sustained release potential of the core-sheath structured nanofibers. We found that the conformation of SF contained in PCL/SF composite nanofibers was transformed from random coil to β-sheet when treated with methanol, leading to improved crystallinity and tensile strength of nanofibrous scaffolds. The hydrophobicity and diameter of nanofibers decreased when we increased the content of SF in PCL/SF composite nanofibers. Furthermore, we evaluated the potential of fabricated PCL/SF composite nanofibers as scaffold in vitro. The results confirmed that fabricated PCL/SF scaffolds improved cell attachment and proliferation. Our results demonstrated the feasibility to generate core-sheath nanofibers composed of PCL and SF using a single-nozzle technique. The produced nanofibrous scaffolds with sustained drug release have potential application in tissue engineering.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Biological Macromolecules - Volume 49, Issue 2, 1 August 2011, Pages 223-232
نویسندگان
, , , , , , , , , ,