کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1990111 | 1540705 | 2010 | 7 صفحه PDF | دانلود رایگان |

BackgoundAnimal studies suggest that reactive oxygen species (ROS) play an important role in the development of diabetic cardiomyopathy.HypothesisMatrix metalloproteinase-2 (MMP-2) is activated by ROS and contributes to the acute loss of myocardial contractile function by targeting and cleaving susceptible proteins including troponin I (TnI) and α-actinin.MethodsUsing the streptozotocin-induced diabetic rat model, we evaluated the effect of daily in vivo administration of sodium selenate (0.3 mg/kg; DMS group), or a pure omega-3 fish oil with antioxidant vitamin E (omega-3E; 50 mg/kg; DMFA group), which has antioxidant-like effects, for 4 weeks on heart function and on several biochemical parameters related to oxidant stress and MMP-2.ResultsAlthough both treatments prevented the diabetes-induced depression in left ventricular developed pressure (LVDP) as well as the rates of changes in developed pressure (±dP/dt) (P<.001), the improvement in LVDP of the DMS group was greater compared to that of the DMFA group (P<.001). Moreover, these treatments reduced the diabetes-induced increase in myocardial oxidized protein sulfhydryl and nitrite concentrations (P<.001). Gelatin zymography and Western blot data indicated that the diabetes-induced changes in myocardial levels of MMP-2 and tissue inhibitor of matrix metalloproteinase-4 (TIMP-4) and the reduction in TnI and α-actinin protein levels were improved in both the DMS and DMFA groups (P<.001).ConclusionsThese results suggest that diabetes-induced alterations in MMP-2 and TIMP-4 contribute to myocardial contractile dysfunction by targeting TnI and α-actinin and that sodium selenate or omega-3E could have therapeutic benefits in diabetic cardiomyopathy.
Journal: The Journal of Nutritional Biochemistry - Volume 21, Issue 9, September 2010, Pages 827–833