کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1990113 | 1540705 | 2010 | 7 صفحه PDF | دانلود رایگان |

Dietary soy isoflavones have been shown to favorably alter the metabolic phenotypes associated with Type 2 diabetes. However, the identification of direct targets and the underlying molecular mechanisms by which soy isoflaovones exert antidiabetic effects remain elusive. Since the insulin-sensitizing effects of thiazolidinediones, antidiabetic drugs, are mediated through activation of peroxisome proliferators-activated receptor gamma (PPARγ), we examined the effects of daidzein and the daidzein metabolite, equol, on adipocyte differentiation and PPARγ activation. In 3T3-L1 cells, daidzein enhanced adipocyte differentiation and PPARγ expression in a dose-dependent manner. Daidzein also dose-dependently increased insulin-stimulated glucose uptake and the relative abundance of insulin-responsive glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS-1) mRNA. In C3H10T1/2 cells, both daidzein and equol at 1 μmol/L and higher significantly increased adipocyte differentiation and insulin-stimulated glucose uptake. Furthermore, daidzein and equol up-regulated PPARγ-mediated transcriptional activity, and daidzein restored the PPARγ antagonist-induced inhibition of aP2 and GLUT4 mRNA levels. Our results indicate that daidzein enhances insulin-stimulated glucose uptake in adipocytes by increasing the expression of GLUT4 and IRS-1 via the activation of PPARγ. These data further support the recent findings that favorable effects of dietary soy isoflavones may be attributable to daidzein and its metabolite equol.
Journal: The Journal of Nutritional Biochemistry - Volume 21, Issue 9, September 2010, Pages 841–847