کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1990218 1540709 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Delayed activation of extracellular-signal-regulated kinase 1/2 is involved in genistein- and equol-induced cell proliferation and estrogen-receptor-α-mediated transcription in MCF-7 breast cancer cells
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Delayed activation of extracellular-signal-regulated kinase 1/2 is involved in genistein- and equol-induced cell proliferation and estrogen-receptor-α-mediated transcription in MCF-7 breast cancer cells
چکیده انگلیسی
The aim of this study was to determine whether the extracellular-signal-regulated kinase 1/2 (ERK1/2) pathway is involved in genistein- and equol-induced cell proliferation and estrogen receptor (ER) α transactivation. For MCF-7 human breast cells, low concentrations of genistein and equol enhanced proliferation and induced MCF-7 cells to enter the S-phase. Genistein- and equol-induced cell proliferation and S-phase entry were blocked by the ERα antagonists 4-hydroxytamoxifen and ICI 182,780 and by the mitogen-activated protein kinase 1/2 inhibitor U0126. These data indicated that ERα and mitogen-activated protein extracellular kinase/ERK signaling were required for the effects of genistein/equol on cell growth and cell cycle progression. Genistein and equol induced delayed and prolonged activation of ERK1/2. Inhibition of ERK1/2 phosphorylation by U0126 led to complete suppression of genistein- and equol-induced estrogen response element reporter activity and to suppression of the estrogen-responsive gene pS2. The anti-estrogen ICI had no effect on genistein- and equol-induced ERK1/2 phosphorylation. These results suggest that activation of ERK1/2 lies upstream of ER-mediated transcription, and that ERK1/2 activation is necessary for the transactivation of ERα. In conclusion, genistein and equol elicit a delayed activation of ERK1/2, and this activation appears to be involved in the proliferation of breast cancer cells and estrogen-dependent transcriptional activation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Nutritional Biochemistry - Volume 21, Issue 5, May 2010, Pages 390-396
نویسندگان
, , , , , , , ,